If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+32k-12=0
a = 5; b = 32; c = -12;
Δ = b2-4ac
Δ = 322-4·5·(-12)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{79}}{2*5}=\frac{-32-4\sqrt{79}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{79}}{2*5}=\frac{-32+4\sqrt{79}}{10} $
| 3^x/5^x=9/25 | | 3x/5x=9/25 | | 3x/5=9/25 | | X+15=-7x-9 | | -2x+12=6-8x | | 8x-2x+3x=81 | | 0.012=4.8/300+2x | | 3(b-4)=17 | | (x+2)(x+4)(x+6)(x+8)=3465 | | (b/4)-3=3 | | 8d+20d=120+15d | | 20*x=420 | | 1+x+x^2=x | | 4p2+5p+1=0 | | 3(y+11)=2(y-2) | | y=6-3y/4 | | 3-2n/5=2n | | (a/20)=(20/(a-19)) | | 3w/7+2=w | | a^2-19a-400=0 | | 2x/5+3=23*5 | | 45B=10x | | Y60+2x=74 | | (c+7)(c-7)=0 | | 2y+5y-3y=0 | | 27-4d=5d | | 15y+10=0 | | 18y+3=0 | | y=1E-10*0.005 | | x=18/39 | | 3(x+4)-5=10 | | 3(4n+7)(2n+3)=0 |